kittycad.models.selection.OptionMeshByName

class kittycad.models.selection.OptionMeshByName(**data)[source][source]

Bases: BaseModel

Visit the first mesh with the given name.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(_BaseModel__context)

Override this method to perform additional initialization after __init__ and model_construct.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

model_computed_fields

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

name

type

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'model_computed_fields': 'ClassVar[Dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[Dict[str, FieldInfo]]', 'name': <class 'str'>, 'type': typing.Literal['mesh_by_name']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.selection'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.selection.OptionMeshByName'>, 'config': {'title': 'OptionMeshByName'}, 'custom_init': False, 'metadata': {'pydantic_js_annotation_functions': [], 'pydantic_js_functions': [functools.partial(<function modify_model_json_schema>, cls=<class 'kittycad.models.selection.OptionMeshByName'>, title=None), <bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.selection.OptionMeshByName'>>]}, 'ref': 'kittycad.models.selection.OptionMeshByName:94675536627504', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'name': {'metadata': {'pydantic_js_annotation_functions': [<function get_json_schema_update_func.<locals>.json_schema_update_func>], 'pydantic_js_functions': []}, 'schema': {'type': 'str'}, 'type': 'model-field'}, 'type': {'metadata': {'pydantic_js_annotation_functions': [<function get_json_schema_update_func.<locals>.json_schema_update_func>], 'pydantic_js_functions': []}, 'schema': {'default': 'mesh_by_name', 'schema': {'expected': ['mesh_by_name'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMeshByName', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x0000561b5dbac730,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007f1785a3c5a0,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007f1781c0bbb0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "mesh_by_name",                                             },                                             expected_py: None,                                             name: "literal['mesh_by_name']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "name": SerField {                         key_py: Py(                             0x00007f1785a3a388,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Str(                                 StrSerializer,                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMeshByName",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMeshByName", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "name",                         lookup_key: Simple {                             key: "name",                             py_key: Py(                                 0x00007f1781cba6d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "name",                                         Py(                                             0x00007f1781cba730,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f1785a3a388,                         ),                         validator: Str(                             StrValidator {                                 strict: false,                                 coerce_numbers_to_str: false,                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007f1781cba760,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007f1781cba790,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007f1785a3c5a0,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007f1781c0bbb0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "mesh_by_name": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             values: [                                                 Py(                                                     0x00007f1781c0bbb0,                                                 ),                                             ],                                         },                                         expected_repr: "'mesh_by_name'",                                         name: "literal['mesh_by_name']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['mesh_by_name']]",                                 undefined: Py(                                     0x00007f1783902350,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMeshByName",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x0000561b5dbac730,         ),         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007f1783902350,         ),         name: "OptionMeshByName",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, name: str, type: Literal['mesh_by_name'] = 'mesh_by_name') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (dict[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[Dict[str, FieldInfo]] = {'name': FieldInfo(annotation=str, required=True), 'type': FieldInfo(annotation=Literal['mesh_by_name'], required=False, default='mesh_by_name')}[source]

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (dict[str, Any] | None) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

name: str[source]
classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['mesh_by_name'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self