kittycad.models.output_format3d

Classes

OptionFbx(**data)

Autodesk Filmbox (FBX) format.

OptionGltf(**data)

glTF 2.0.

OptionObj(**data)

Wavefront OBJ format.

OptionPly(**data)

The PLY Polygon File Format.

OptionStep(**data)

ISO 10303-21 (STEP) format.

OptionStl(**data)

*ST**ereo**L**ithography format.

class kittycad.models.output_format3d.OptionFbx(**data)[source][source]

Autodesk Filmbox (FBX) format.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

created: Optional[datetime][source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_dict(data)[source]

Create model instance from dictionary.

Parameters:

data (Dict[str, Any]) – Dictionary containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_data = {“id”: “123”, “name”: “John”} user = User.from_dict(user_data)

classmethod from_json(json_str)[source]

Create model instance from JSON string.

Parameters:

json_str (str) – JSON string containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_json = ‘{“id”: “123”, “name”: “John”}’ user = User.from_json(user_json)

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields = {}[source]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'populate_by_name': True, 'protected_namespaces': (), 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields = {'created': FieldInfo(annotation=Union[datetime, NoneType], required=False, default=None), 'storage': FieldInfo(annotation=FbxStorage, required=True), 'type': FieldInfo(annotation=Literal['fbx'], required=False, default='fbx')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Mapping[str, Any] | None) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

storage: FbxStorage[source]
to_dict()[source]

Convert model to dictionary with alias support.

Return type:

Dict[str, Any]

Returns:

Dictionary representation of the model.

to_json()[source]

Convert model to JSON string with alias support.

Return type:

str

Returns:

JSON string representation of the model.

type: Literal['fbx'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.output_format3d.OptionGltf(**data)[source][source]

glTF 2.0. We refer to this as glTF since that is how our customers refer to it, although by default it will be in binary format and thus technically (glb). If you prefer ASCII output, you can set that option for the export.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_dict(data)[source]

Create model instance from dictionary.

Parameters:

data (Dict[str, Any]) – Dictionary containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_data = {“id”: “123”, “name”: “John”} user = User.from_dict(user_data)

classmethod from_json(json_str)[source]

Create model instance from JSON string.

Parameters:

json_str (str) – JSON string containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_json = ‘{“id”: “123”, “name”: “John”}’ user = User.from_json(user_json)

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields = {}[source]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'populate_by_name': True, 'protected_namespaces': (), 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields = {'presentation': FieldInfo(annotation=GltfPresentation, required=True), 'storage': FieldInfo(annotation=GltfStorage, required=True), 'type': FieldInfo(annotation=Literal['gltf'], required=False, default='gltf')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Mapping[str, Any] | None) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

presentation: GltfPresentation[source]
classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

storage: GltfStorage[source]
to_dict()[source]

Convert model to dictionary with alias support.

Return type:

Dict[str, Any]

Returns:

Dictionary representation of the model.

to_json()[source]

Convert model to JSON string with alias support.

Return type:

str

Returns:

JSON string representation of the model.

type: Literal['gltf'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.output_format3d.OptionObj(**data)[source][source]

Wavefront OBJ format.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

coords: System[source]
copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_dict(data)[source]

Create model instance from dictionary.

Parameters:

data (Dict[str, Any]) – Dictionary containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_data = {“id”: “123”, “name”: “John”} user = User.from_dict(user_data)

classmethod from_json(json_str)[source]

Create model instance from JSON string.

Parameters:

json_str (str) – JSON string containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_json = ‘{“id”: “123”, “name”: “John”}’ user = User.from_json(user_json)

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields = {}[source]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'populate_by_name': True, 'protected_namespaces': (), 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields = {'coords': FieldInfo(annotation=System, required=True), 'type': FieldInfo(annotation=Literal['obj'], required=False, default='obj'), 'units': FieldInfo(annotation=UnitLength, required=True)}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Mapping[str, Any] | None) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

to_dict()[source]

Convert model to dictionary with alias support.

Return type:

Dict[str, Any]

Returns:

Dictionary representation of the model.

to_json()[source]

Convert model to JSON string with alias support.

Return type:

str

Returns:

JSON string representation of the model.

type: Literal['obj'][source]
units: UnitLength[source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.output_format3d.OptionPly(**data)[source][source]

The PLY Polygon File Format.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

coords: System[source]
copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_dict(data)[source]

Create model instance from dictionary.

Parameters:

data (Dict[str, Any]) – Dictionary containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_data = {“id”: “123”, “name”: “John”} user = User.from_dict(user_data)

classmethod from_json(json_str)[source]

Create model instance from JSON string.

Parameters:

json_str (str) – JSON string containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_json = ‘{“id”: “123”, “name”: “John”}’ user = User.from_json(user_json)

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields = {}[source]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'populate_by_name': True, 'protected_namespaces': (), 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields = {'coords': FieldInfo(annotation=System, required=True), 'selection': FieldInfo(annotation=RootModel[Annotated[Union[OptionDefaultScene, OptionSceneByIndex, OptionSceneByName, OptionMeshByIndex, OptionMeshByName], FieldInfo(annotation=NoneType, required=True, discriminator='type')]], required=True), 'storage': FieldInfo(annotation=PlyStorage, required=True), 'type': FieldInfo(annotation=Literal['ply'], required=False, default='ply'), 'units': FieldInfo(annotation=UnitLength, required=True)}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Mapping[str, Any] | None) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

selection: RootModel[Annotated[Union[OptionDefaultScene, OptionSceneByIndex, OptionSceneByName, OptionMeshByIndex, OptionMeshByName], FieldInfo(annotation=NoneType, required=True, discriminator='type')]][source]
storage: PlyStorage[source]
to_dict()[source]

Convert model to dictionary with alias support.

Return type:

Dict[str, Any]

Returns:

Dictionary representation of the model.

to_json()[source]

Convert model to JSON string with alias support.

Return type:

str

Returns:

JSON string representation of the model.

type: Literal['ply'][source]
units: UnitLength[source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.output_format3d.OptionStep(**data)[source][source]

ISO 10303-21 (STEP) format.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

coords: System[source]
copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

created: Optional[datetime][source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_dict(data)[source]

Create model instance from dictionary.

Parameters:

data (Dict[str, Any]) – Dictionary containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_data = {“id”: “123”, “name”: “John”} user = User.from_dict(user_data)

classmethod from_json(json_str)[source]

Create model instance from JSON string.

Parameters:

json_str (str) – JSON string containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_json = ‘{“id”: “123”, “name”: “John”}’ user = User.from_json(user_json)

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields = {}[source]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'populate_by_name': True, 'protected_namespaces': (), 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields = {'coords': FieldInfo(annotation=System, required=True), 'created': FieldInfo(annotation=Union[datetime, NoneType], required=False, default=None), 'type': FieldInfo(annotation=Literal['step'], required=False, default='step')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Mapping[str, Any] | None) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

to_dict()[source]

Convert model to dictionary with alias support.

Return type:

Dict[str, Any]

Returns:

Dictionary representation of the model.

to_json()[source]

Convert model to JSON string with alias support.

Return type:

str

Returns:

JSON string representation of the model.

type: Literal['step'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.output_format3d.OptionStl(**data)[source][source]

*ST**ereo**L**ithography format.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

coords: System[source]
copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_dict(data)[source]

Create model instance from dictionary.

Parameters:

data (Dict[str, Any]) – Dictionary containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_data = {“id”: “123”, “name”: “John”} user = User.from_dict(user_data)

classmethod from_json(json_str)[source]

Create model instance from JSON string.

Parameters:

json_str (str) – JSON string containing model data.

Return type:

KittyCadBaseModel

Returns:

Model instance.

Example

user_json = ‘{“id”: “123”, “name”: “John”}’ user = User.from_json(user_json)

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields = {}[source]
model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'populate_by_name': True, 'protected_namespaces': (), 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields = {'coords': FieldInfo(annotation=System, required=True), 'selection': FieldInfo(annotation=RootModel[Annotated[Union[OptionDefaultScene, OptionSceneByIndex, OptionSceneByName, OptionMeshByIndex, OptionMeshByName], FieldInfo(annotation=NoneType, required=True, discriminator='type')]], required=True), 'storage': FieldInfo(annotation=StlStorage, required=True), 'type': FieldInfo(annotation=Literal['stl'], required=False, default='stl'), 'units': FieldInfo(annotation=UnitLength, required=True)}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Mapping[str, Any] | None) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

selection: RootModel[Annotated[Union[OptionDefaultScene, OptionSceneByIndex, OptionSceneByName, OptionMeshByIndex, OptionMeshByName], FieldInfo(annotation=NoneType, required=True, discriminator='type')]][source]
storage: StlStorage[source]
to_dict()[source]

Convert model to dictionary with alias support.

Return type:

Dict[str, Any]

Returns:

Dictionary representation of the model.

to_json()[source]

Convert model to JSON string with alias support.

Return type:

str

Returns:

JSON string representation of the model.

type: Literal['stl'][source]
units: UnitLength[source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self