kittycad.models.object_visible.ObjectVisible
- class kittycad.models.object_visible.ObjectVisible(**data)[source][source]
- Bases: - KittyCadBaseModel- The response from the - ObjectVisibleendpoint.- Create a new model by parsing and validating input data from keyword arguments. - Raises [ - ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.- selfis explicitly positional-only to allow- selfas a field name.- copy(*, include=None, exclude=None, update=None, deep=False)[source]
- Returns a copy of the model. - !!! warning “Deprecated”
- This method is now deprecated; use - model_copyinstead.
 - If you need - includeor- exclude, use:- `python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
- include – Optional set or mapping specifying which fields to include in the copied model. 
- exclude – Optional set or mapping specifying which fields to exclude in the copied model. 
- update – Optional dictionary of field-value pairs to override field values in the copied model. 
- deep – If True, the values of fields that are Pydantic models will be deep-copied. 
 
- Returns:
- A copy of the model with included, excluded and updated fields as specified. 
 
 - dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
 - classmethod from_dict(data)[source]
- Create model instance from dictionary. - Parameters:
- Return type:
- Returns:
- Model instance. 
 - Example - user_data = {“id”: “123”, “name”: “John”} user = User.from_dict(user_data) 
 - classmethod from_json(json_str)[source]
- Create model instance from JSON string. - Parameters:
- json_str ( - str) – JSON string containing model data.
- Return type:
- Returns:
- Model instance. 
 - Example - user_json = ‘{“id”: “123”, “name”: “John”}’ user = User.from_json(user_json) 
 - json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
 
 - model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'populate_by_name': True, 'protected_namespaces': (), 'use_enum_values': True, 'validate_by_alias': True, 'validate_by_name': True}[source]
- Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].
 - classmethod model_construct(_fields_set=None, **values)[source]
- Creates a new instance of the - Modelclass with validated data.- Creates a new model setting - __dict__and- __pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
- model_construct()generally respects the- model_config.extrasetting on the provided model. That is, if- model_config.extra == 'allow', then all extra passed values are added to the model instance’s- __dict__and- __pydantic_extra__fields. If- model_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call to- model_construct(), having- model_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
 - Parameters:
- _fields_set ( - set[- str] |- None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [- model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the- valuesargument will be used.
- values ( - Any) – Trusted or pre-validated data dictionary.
 
- Return type:
- Self
- Returns:
- A new instance of the - Modelclass with validated data.
 
 - model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
- [ - model_copy](../concepts/serialization.md#model_copy)
 - Returns a copy of the model. - !!! note
- The underlying instance’s [ - __dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
 
 - model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
- [ - model_dump](../concepts/serialization.md#modelmodel_dump)
 - Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters:
- mode ( - Union[- Literal[- 'json',- 'python'],- str]) – The mode in which- to_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
- include ( - Union[- set[- int],- set[- str],- Mapping[- int,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- Mapping[- str,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- None]) – A set of fields to include in the output.
- exclude ( - Union[- set[- int],- set[- str],- Mapping[- int,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- Mapping[- str,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- None]) – A set of fields to exclude from the output.
- context ( - Any|- None) – Additional context to pass to the serializer.
- by_alias ( - bool|- None) – Whether to use the field’s alias in the dictionary key if defined.
- exclude_unset ( - bool) – Whether to exclude fields that have not been explicitly set.
- exclude_defaults ( - bool) – Whether to exclude fields that are set to their default value.
- exclude_none ( - bool) – Whether to exclude fields that have a value of- None.
- round_trip ( - bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
- warnings ( - Union[- bool,- Literal[- 'none',- 'warn',- 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [- PydanticSerializationError][pydantic_core.PydanticSerializationError].
- fallback ( - Optional[- Callable[[- Any],- Any]]) – A function to call when an unknown value is encountered. If not provided, a [- PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
- serialize_as_any ( - bool) – Whether to serialize fields with duck-typing serialization behavior.
 
- Return type:
- Returns:
- A dictionary representation of the model. 
 
 - model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
- [ - model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
 - Generates a JSON representation of the model using Pydantic’s - to_jsonmethod.- Parameters:
- indent ( - int|- None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
- include ( - Union[- set[- int],- set[- str],- Mapping[- int,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- Mapping[- str,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- None]) – Field(s) to include in the JSON output.
- exclude ( - Union[- set[- int],- set[- str],- Mapping[- int,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- Mapping[- str,- Union[- set[- int],- set[- str],- Mapping[- int,- Union[IncEx,- bool]],- Mapping[- str,- Union[IncEx,- bool]],- bool]],- None]) – Field(s) to exclude from the JSON output.
- context ( - Any|- None) – Additional context to pass to the serializer.
- by_alias ( - bool|- None) – Whether to serialize using field aliases.
- exclude_unset ( - bool) – Whether to exclude fields that have not been explicitly set.
- exclude_defaults ( - bool) – Whether to exclude fields that are set to their default value.
- exclude_none ( - bool) – Whether to exclude fields that have a value of- None.
- round_trip ( - bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
- warnings ( - Union[- bool,- Literal[- 'none',- 'warn',- 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [- PydanticSerializationError][pydantic_core.PydanticSerializationError].
- fallback ( - Optional[- Callable[[- Any],- Any]]) – A function to call when an unknown value is encountered. If not provided, a [- PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
- serialize_as_any ( - bool) – Whether to serialize fields with duck-typing serialization behavior.
 
- Return type:
- Returns:
- A JSON string representation of the model. 
 
 - property model_extra: dict[str, Any] | None[source]
- Get extra fields set during validation. - Returns:
- A dictionary of extra fields, or - Noneif- config.extrais not set to- "allow".
 
 - property model_fields_set: set[str][source]
- Returns the set of fields that have been explicitly set on this model instance. - Returns:
- A set of strings representing the fields that have been set,
- i.e. that were not filled from defaults. 
 
 
 - classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
- Generates a JSON schema for a model class. - Parameters:
- by_alias ( - bool) – Whether to use attribute aliases or not.
- ref_template ( - str) – The reference template.
- schema_generator ( - type[- GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of- GenerateJsonSchemawith your desired modifications
- mode ( - Literal[- 'validation',- 'serialization']) – The mode in which to generate the schema.
 
- Return type:
- Returns:
- The JSON schema for the given model class. 
 
 - classmethod model_parametrized_name(params)[source]
- Compute the class name for parametrizations of generic classes. - This method can be overridden to achieve a custom naming scheme for generic BaseModels. - Parameters:
- params ( - tuple[- type[- Any],- ...]) – Tuple of types of the class. Given a generic class- Modelwith 2 type variables and a concrete model- Model[str, int], the value- (str, int)would be passed to- params.
- Return type:
- Returns:
- String representing the new class where - paramsare passed to- clsas type variables.
- Raises:
- TypeError – Raised when trying to generate concrete names for non-generic models. 
 
 - model_post_init(context, /)[source]
- Override this method to perform additional initialization after - __init__and- model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
 
 - classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
- Try to rebuild the pydantic-core schema for the model. - This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails. - Parameters:
- force ( - bool) – Whether to force the rebuilding of the model schema, defaults to- False.
- raise_errors ( - bool) – Whether to raise errors, defaults to- True.
- _parent_namespace_depth ( - int) – The depth level of the parent namespace, defaults to 2.
- _types_namespace ( - Mapping[- str,- Any] |- None) – The types namespace, defaults to- None.
 
- Return type:
- Returns:
- Returns - Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns- Trueif rebuilding was successful, otherwise- False.
 
 - classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
- Validate a pydantic model instance. - Parameters:
- obj ( - Any) – The object to validate.
- from_attributes ( - bool|- None) – Whether to extract data from object attributes.
- context ( - Any|- None) – Additional context to pass to the validator.
- by_alias ( - bool|- None) – Whether to use the field’s alias when validating against the provided input data.
- by_name ( - bool|- None) – Whether to use the field’s name when validating against the provided input data.
 
- Raises:
- ValidationError – If the object could not be validated. 
- Return type:
- Self
- Returns:
- The validated model instance. 
 
 - classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
- [JSON Parsing](../concepts/json.md#json-parsing) 
 - Validate the given JSON data against the Pydantic model. - Parameters:
- json_data ( - str|- bytes|- bytearray) – The JSON data to validate.
- context ( - Any|- None) – Extra variables to pass to the validator.
- by_alias ( - bool|- None) – Whether to use the field’s alias when validating against the provided input data.
- by_name ( - bool|- None) – Whether to use the field’s name when validating against the provided input data.
 
- Return type:
- Self
- Returns:
- The validated Pydantic model. 
- Raises:
- ValidationError – If - json_datais not a JSON string or the object could not be validated.
 
 - classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- Validate the given object with string data against the Pydantic model. - Parameters:
- obj ( - Any) – The object containing string data to validate.
- context ( - Any|- None) – Extra variables to pass to the validator.
- by_alias ( - bool|- None) – Whether to use the field’s alias when validating against the provided input data.
- by_name ( - bool|- None) – Whether to use the field’s name when validating against the provided input data.
 
- Return type:
- Self
- Returns:
- The validated Pydantic model. 
 
 - classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
- Self
 
 - classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
- Self
 
 - classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
- Return type: